
Data Auditing
Concepts and Implementation
David Mann
Biogen Idec

Topics
Why track changes to your data?

Evolution Overview

Design Considerations

Implementation Options

Examples

Bio
Lead Oracle DBA at Biogen Idec

Developer and DBA Background

Special interests - graphing data and
developing administration tools

I’m a data hoarder

WHY TRACK DATA CHANGES?

Types of Oracle Auditing
Security/Administrative Events

Alert/Audit Logs
SYSDBA activities 

Data Definition Language (DDL)
Structure Changes 

Data Manipulation Language (DML)
SELECT
Results of INSERTs, UPDATEs DELETEs

We Will Focus On
DML updates to data

Who | What | When
Ability to retrieve a previous state
Ability to list versions between states
Bonus: Other information modified at
same time

Why Track Data Changes?
Requirement for Problem Domain

Financial
Medical Patient History

Operational Support
Investigating, monitoring, and recording changes

Internal Auditing Requirements
External Auditing Requirements

Regulatory - SOX, HIPAA, etc.
Accountability / deterrent
Because customers expect it

Use Cases
We found a data error on a report. We need to see the
previous values for a few of the records to confirm they are
sane.

We are not sure if the user was following update
procedures. Can we inspect a user’s update history?

Are there any updates to the EMP table outside of
business hours? What were the updates and who did
them?

I need to inspect 1..n previous versions of a record
because.... just because!

EVOLUTION OVERVIEW
STAGES OF AUDITING GRIEF

Evolution of Auditing - 1/4
No Context

Typical “Rev 1” deliverable or trivial example schema

Can only hold current values

Physical deletions

Evolution of Auditing - 2/4
Limited Context

A novel solution “Invented Here”

Created User / Last Modified User

Created Date / Last Modified Date

May support logical deletions

Evolution of Auditing - 3/4
Full Context via Informed Design

All changes to the data are recorded - Trans & User

Inputs/Outputs of systems defined

Flirting with Valid Time

Still a lot of manual work involved during development

Evolution of Auditing - 4/4
Full Context via DBMS Tools

All changes to the data are recorded

Transaction Time and Valid Time used where appropriate

Leveraging tools/automation/DBMS features to make
things easier on developers and end users

Bonus: Changes can be tied to transactions

O

DESIGN CONSIDERATIONS

The Past and Present

TIME

Addr1=111 Elm St. Addr1=222 Oak St.

NOWAPRIL 2010
08:00

MAY 2013
10:00

What should we record?
Transaction Time

System Time when a fact is stored in the database  

Identity of the user changing the data
!

New Value
!
Old Value?

Old value accessible via previous auditing activity

Where do we capture changes?
Application / Business Logic Layer

Connection level

Database - Internal

Trigger

Oracle Features - Flashback, CDC

Database - External

Redo based - Golden Gate, LogMiner

Storage of Audit Trail Data
Operating system files

System table - AUD$, FGA_LOG$

User defined table

System defined table

Online Local / Online Near / Offline Remote storage

Security of Auditing History
Who made the change?

Identify via username if available
May be a layer of abstraction away if connection
pooling
Proxy users, osuser, context variable

Who should have access to changes?

Are audit tables protected from tampering?

Does your design support separation of duties?

IMPLEMENTATION OPTIONS
FROM DATA MODELING TO OPTIONAL FEATURES

Implementation Options
Application code / business logic

Roll your own - data modeling + triggers *

Roll your own - CDC-ish Offload

Oracle Golden Gate *

Oracle Flashback Features *

Other Auditing Tools

Application Code
Generate change detail close to your business logic

Pros:

Portable between database systems

Flexible

Cons:

On the hook for all aspects of capture and management

Data Modeling + Triggers
Decide on Stream or Image storage of data changes

Add columns to an ‘audit’ table

Operation - Insert / Update / Delete

User

DateTime

Three after row triggers to record DML on each record

Building your Auditing
Issues
Common Solutions
Prior Art
Example Trigger
Pros and Cons

Data Auditing Storage

Stream Of Individual  
Changes

Copy of Record  
At Each State

Physical Storage of Changes
Stream - if too many columns changed then might as
well have just copied the record

Point of storage inefficiency

Example 1: 1 record, 1 column changed

Stream : Create 1 record in audit table

Copy : Make 1 copy of record

Example 1: 1 record, n columna changed

Stream : Create n records in audit table

Copy : Make 1 copy of record

All-In-One Storage
Valid Time fields added to record, save new versions
in same table
Pros:

Simple concept
Cons:

Locating current record logic is prohibitive. Can be
simplified with views but still resource intensive.
May be hard to leverage built in RI because of
“dupe” records

Clone Audit Table Storage
Add CHANGED_DATE, CHANGED_USER,
[TRANSACTION_ID]
Pros:

Easy to recreate row-by-row what happened
Actions can be linked to a 'transaction' type entity.
RI can be used as normal on OLTP entities

Cons:
Must go to separate table for audit info
Generation and Performance of triggers can be an
issue
New record produced for each change
Logic required to show which fields updated from
version to version

Change Stream - Input
Collect individual changes as they go against tables

Typically recorded:

Table Name

Column Name

How did it change? Insert / Update / Delete Action

Who Changed

When was it changed?

What changed

Bonus: Transaction ID

Change Stream - Insert
INSERT INTO EMP (EMPNO, ENAME, DEPTNO)!
 VALUES (100,‘John Smith’,20);!
COMMIT;

EMP
EMPNO ENAME DEPTNO

100 John Smith 20

EMP_AUDIT

TABLE COLUMN PK DATE USER ACT OLD
VALUE

NEW
VALUE

EMP ENAME 100 11/5/2013

5:00pm DMANN I NULL John Smith

EMP DEPTNO 100 11/5/2013

5:00pm DMANN I NULL 20

Change Stream - Update
UPDATE EMP SET DEPTNO=50 WHERE EMPNO=100; !
COMMIT;

EMP
EMPNO ENAME DEPTNO

100 John Smith 50

EMP_AUDIT

TABLE COLUMN PK DATE USER ACT OLD
VALUE

NEW
VALUE

EMP DEPTNO 100 11/5/2013

5:05pm DMANN U 20 50

Change Stream - Delete
DELETE FROM EMP WHERE EMPNO=100; !
COMMIT;

EMP
EMPNO ENAME DEPTNO

EMP_AUDIT

TABLE COLUMN PK DATE USER AC
T

OLD
VALUE

NEW
VALUE

EMP DEPTNO 100 11/5/2013

5:10pm DMANN D NULL NULL

Change Stream
Pros

Easy to follow individual changes to a record

Cons

Inefficient access to previous states

Complex to recreate a record at a specific
point in time

Tricky

May be more efficient on disk space for simple/
infrequent changes but can balloon for high
rates of change

Copy of Records
Collect an image of the state of the record

Pros

Simple mechanism to understand and implement

Very clear what the state of a record is at a point in
time

Cons

If only 1 column changes a lot of space can be
wasted

Image - Insert
INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (100,‘John Smith’,20);!
COMMIT;

EMP
EMPNO ENAME DEPTNO

100 John Smith 20

EMP_AUDIT

EMPNO ENAME DEPT
NO TRANS_DATE USER DELETE_FLAG

100 John Smith 20 4/24/14 11:00 DMANN N

Image - Update
UPDATE EMP SET DEPTNO=50 WHERE EMPNO=100; !
COMMIT;

EMP
EMPNO ENAME DEPTNO

100 John Smith 50

EMP_AUDIT

EMPNO ENAME DEPT
NO

TRANS_DATE USER DELETE_FLAG

100 John Smith 20 4/24/14 11:00 DMANN N

100 John Smith 50 4/24/14 11:05 DMANN N

Image - Delete
DELETE FROM EMP WHERE EMPNO=100; !
COMMIT;

EMP
EMPNO ENAME DEPTNO

100 John Smith 50

EMP_AUDIT
EMPNO ENAME DEPT

NO
TRANS_DATE USER DELETE_FLAG

100 John Smith 20 4/24/14 11:00 DMANN N
100 John Smith 50 4/24/14 11:05 DMANN N
100 John Smith 50 4/24/14 11:10 DMANN Y

Prior Art
 You are not the first to encounter this problem

 Data Warehouse Approach

“Slowly changing dimensions” - Kimball Group

HTTP://WWW.KIMBALLGROUP.COM/2013/02/05/DESIGN-TIP-152-SLOWLY-CHANGING-DIMENSION-TYPES-0-4-5-6-7/

http://www.kimballgroup.com/2013/02/05/design-tip-152-slowly-changing-dimension-types-0-4-5-6-7/

Example Trigger
CREATE TRIGGER emp_audit!
AFTER INSERT OR DELETE OR UPDATE ON emp!
for each row!
begin!
 insert into emp_audit (!
 empno, ename,!
 job, mgr,!
 hiredate, sal,!
 comm, deptno,!
 last_modified_user, last_modified_date!
) VALUES (!
 :new.empno, :new.ename,!
 :new.job, :new.mgr,!
 :new.hiredate, :new.sal,!
 :new.comm, :new.deptno!
 user, sysdate!
);!
end;!

Modeling/Trigger - Pros and Cons
Pros

“Free”

Prior art - Lots of blog and StackOverflow posts

Portable - to a degree

Cons

Recreating the wheel / “Not invented here” / Tech Debt

Performance / Concurrency

Cost - design/implementation/maintenance

Security - “Chain of Custody”

Implementation gotchas - before vs after triggers

Data Modeling Demo
Create Scott Objects

Create _AUDIT tables

Add tracking fields to _AUDIT tables

Create triggers

Exercise triggers

View recorded data

CDC-ish Offload
Effects of DML changes recorded to a table
Pros:

Logical and physical separation
Low impact to source DB
!

Cons:
CDC is old tech not being actively improved
Separate hop to get to auditing history
tables
Management of schema changes to base
tables can be difficult/error prone

Offload via GoldenGate
GoldenGate observes changes to a table via Redo

Transports changes to 1 or more destination locations
Configurable to always insert instead of update

Pros:
Low impact to source Database

No schema changes required
Good for auditing legacy or off-the-shelf
Handles high volumes with low resource usage

Logical and physical separation
Can store in local or remote tables
Managing source schema structure changes easier with new
DDL support

Cons:
Cost
New tool in your shop - Training, Complexity, Cooperation
Separate hop to get to auditing history tables

Golden Gate Parameters
INSERTALLRECORDS parameter

Make sure to ADD TRANDATA or you may only see sparse
population of your target records - only fields that changed

Leverage variables to extract transaction time, userid, etc
from source on target side

GGHEADER(“USERID”)

GGHEADER(“TIMESTAMP”)

GGHEADER(“OPTYPE”)

Some other transaction information available

Oracle Flashback
Collection of features to capture, inspect and roll
back database state changes
Flashback Database, Flashback Table, Flashback
Query, Flashback Transaction
Flashback Data Archive

Managed and guaranteed retention of information
Oracle managed transaction time auditing for you
View previous state of data without destructively
recovering to a point in time
Access to auditing features geared towards end
users, not just DBAs

Flashback Pros:
Simplicity - Easy to get up and running
Managed by Oracle. No triggers to debug,
schema objects to deal with. Security a +
Configurable retention times
Flashback Version Query - point in time with
“as of” syntax
Flashback Transaction Query - list previous
versions of records
Good for adding auditing to a mature system
or off-the-shelf system
Licensing relaxed in 11.2.0.4+ versions

Flashback Cons:
Operations management learning curve

Risk of detaching history from table.
Handling export/import of audit data
Can we get data back into Flashback if it
gets detached? DBMS_FLASHBACK_ARCHIVE

How does it play with other features?
Partition/subpartition operations on internal
history tables not allowed
Table DDL may be restricted in earlier versions
Vendor Dependency

Preparing for Flashback
Create storage area for Archive Areas

Determine retention periods

Assign tables to Archive Areas

Query clause or DBMS_FLASHBACK.

Flashback Query
Allows viewing of data in a point in time

Available with default Flashback setup - to a point

Guaranteed with Flashback Data Archive

Two options:

Construct query with “AS OF” clause

Set time with DBMS_FLASHBACK.ENABLE_AT_TIME
and query as normal

SELECT * !
 FROM my_flashback_table !
AS OF TIMESTAMP <timestamp>;!
!
EXEC DBMS_FLASHBACK.ENABLE_AT_TIME(SYSTIMESTAMP - 1);!
SELECT * !
FROM my_flashback_table;

Flashback Transaction
Provides detailed metadata about a transaction

Shows transactions that took place during a specific time
period

Use with Flashback Versions for full detail of a
transaction’s activity

SELECT xid,
 operation,
 undo_sql,
 FROM flashback_transaction_query
 WHERE table_owner = USER
 AND table_name = 'MYTABLE'
 ORDER BY start_timestamp;

Flashback Version Query
Provides versions of a row between two points in time

Pseudocolumns available to provide metadata

VERSIONS BETWEEN clause

SELECT versions_startscn, versions_starttime, !
 versions_endscn, versions_endtime,!
 versions_xid, versions_operation,!
 mytable.* !
 FROM mytable !
 VERSIONS BETWEEN TIMESTAMP !
 TO_TIMESTAMP('2013-03-29 08:00:00’,  
 'YYYY-MM-DD HH24:MI:SS')!
 AND TO_TIMESTAMP('2013-03-29 09:00:00',  
 'YYYY-MM-DD HH24:MI:SS')!
 WHERE id = 1;

Flashback Archive Demo
Define a Flashback Data Archive

Assign tables to it

Perform DML on tables

Inspect the changes

Other Auditing Tools
Basic Statement Auditing

Fine Grained Statement Auditing

Logminer

Misc 3rd Party Tools

12 Information Lifecycle Management

Basic Auditing
AUDIT keyword 
AUDIT INSERT, UPDATE, DELETE ON mytable BY ACCESS;  
AUDIT ALL;

Pros

A simple, gentle introduction to auditing

Cons

For our purposes, it just record events and statements,
not atomic detail of changes

Very broad brush, can be very noisy

Fine Grained Auditing
Pros

Enhancement to basic auditing

Provides for reducing noise in the audit log

Cons

Not built to record atomic data changes. Will just let you
know if policy criteria has been met by a SQL statement

User ran a SELECT to access sensitive data

Micro management of policies

Logminer
Pros:

Low performance overhead

Around since 8i

Good for detailed inspection of activity

Cons:

Target user = DBA

Outputs SQL Statements

Other 3rd Party Tools
“Tee” Tools

Piggybacked JDBC or ODBC driver

SQL statements siphoned off to other system for analysis

No DML recording as activity is in database, not at “Tee”
point

Other approaches

McAfee Database Activity Monitoring

Sensitive SQL statements cancelled

No DML recording

12c Info Lifecycle Mgmt
Temporal Validity

Adds columns for effective/discontinued date
tracking

Automatic predicates for valid time query

alter table mytable add period for track_time;
!
update mytable set track_time_start=sysdate-10 ;
update mytable set track_time_end=sysdate-5;
!
EXECUTE DBMS_FLASHBACK_ARCHIVE.enable_at_valid_time(SYSDATE-15);
EXECUTE DBMS_FLASHBACK_ARCHIVE.enable_at_valid_time(SYSDATE-8);
EXECUTE DBMS_FLASHBACK_ARCHIVE.enable_at_valid_time(SYSDATE);

http://gavinsoorma.com/2013/08/oracle-12c-new-feature-temporal-validity/

12c Info Lifecycle Mgmt
In-database archiving

Manage visibility of active/inactive records in a
table

“Active Flag” filtering

alter table mytable row archival;
!
SELECT COUNT(*) FROM MYTABLE;
!
update sales
 set ORA_ARCHIVE_STATE=DBMS_ILM.ARCHIVESTATENAME(1)
 where time_id < '01-JAN-2013';
!
alter session set row archival visibility=ALL;
alter session set row archival visibility = active; 
!

http://gavinsoorma.com/2013/08/oracle-12c-new-feature-in-database-archiving/

Where do the solutions fit?

O

DATA MODELING /
TRIGGERS

FLASHBACK
DATA ARCHIVE

GOLDEN
GATENOTHING APP TIER

LOGIC

Where to next?
Design for customer needs

Make sure desired outputs are covered by inputs

Get familiar with implementation options

Lots of prior art with Data Modeling

Useful even if leveraging other products

Test your approach

Unit test

You’ve got history, exploit it with Data Warehousing

Kent Graziano

Where to next?
We have mostly explored the Transaction Time auditing

Explore Valid Time

When is the start/end date your data is considered
valid?

This is the User’s Problem Domain (ie Insurance
Policy Coverage Period)

12c Temporal Validity Filter

Flashback to version of data you want and then Filter
for records valid at that point in time

Resources

QUESTIONS
Slides, code, links :
http://ba6.us
!

Email: david@ba6.us
Twitter: @ba6dotus

http://ba6.us
mailto:david@ba6.us

References
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Spradlin.pdf

http://www.kimballgroup.com/1999/08/03/when-a-slowly-changing-dimension-speeds-up/

http://www.rittmanmead.com/2005/10/temporal-databases/

Auditing in 10g 
http://www.oracle-base.com/articles/10g/auditing-10gr2.php

Independent evaluation of Total Recall by Trivadis 
http://www.trivadis.com/uploads/tx_cabagdownloadarea/Flashback-Data-Archives-Rechecked-v1.4_final.pdf

http://stackoverflow.com/questions/12321200/database-row-snapshots-revisions

http://nyoug.org/Presentations/2010/March/Johal_Flashback.pdf

http://portrix-systems.de/blog/brost/the-new-improved-and-free-flashback-data-archives-in-12c/

http://infotechsworld.wordpress.com/2011/10/19/transaction-management-with-logminer-and-flashback-
data-archive/

http://www.oracle-developer.net/display.php?id=320

Temporal Databases - RT Snodgrass - https://cs.arizona.edu/~rts/pubs/LNCS639.pdf

http://www.oracle.com/technetwork/database/storage/total-recall-whitepaper-171749.pdf

http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Spradlin.pdf
http://www.kimballgroup.com/1999/08/03/when-a-slowly-changing-dimension-speeds-up/
http://www.rittmanmead.com/2005/10/temporal-databases/
http://www.oracle-base.com/articles/10g/auditing-10gr2.php
http://www.trivadis.com/uploads/tx_cabagdownloadarea/Flashback-Data-Archives-Rechecked-v1.4_final.pdf
http://stackoverflow.com/questions/12321200/database-row-snapshots-revisions
http://nyoug.org/Presentations/2010/March/Johal_Flashback.pdf
http://portrix-systems.de/blog/brost/the-new-improved-and-free-flashback-data-archives-in-12c/
http://infotechsworld.wordpress.com/2011/10/19/transaction-management-with-logminer-and-flashback-data-archive/
http://www.oracle-developer.net/display.php?id=320
https://cs.arizona.edu/~rts/pubs/LNCS639.pdf
http://www.oracle.com/technetwork/database/storage/total-recall-whitepaper-171749.pdf

