East Coast
~ Oracle Users
(&(® Conference

version of this

[presentation is on-line

| at www.orapub.com.
C Do an OraPub search
for “"CPU".

Understanding
Oracle CPU
Consumption:

The Missing Link

raPub

Craig A. Shallahamer
OraPub, Inc.
craig@orapub.com

Linked [T}

East Coast
~ Oracle Users
(&(® Conference

Understanding
Oracle CPU
Consumption:

The Missing Link

raPub

Craig A. Shallahamer
OraPub, Inc.
craig@orapub.com

Linked [T}

Who Am 1?

Studied economics, mathematics and computer
science at Cal Polytechnic State University San Luis
Obispo, California, USA.

Started working with Oracle technology in 1989 as a
Forms 2.3 developer on Oracle version 5. Oracle

Soon after started performance firefighting daily. Performance

Co-founded both Oracle’s Core Technology and Firefighting
System Performance Groups. z

Left Oracle to start OraPub, Inc. in 1998.
Authored 24+ technical papers and worked in 31 @ario

countries.

Author two books: Oracle Performance Firefighting

and Forecasting Oracle Performance. Forecasting
. Oracle

Teaches performance analysis around the world. Performance

Oracle ACE Director. -} E5=
Blogs performance research: A Wider View XING i e

raPub _Linked[fd.

(c)2013 OraPub, Inc.

Resources

* Research Blog

4 - .
* Free Presentations

Find, Understand & Solve * Free Papers
Oracle Performance Problems « Books
www.storifree.com * Consulting
www.stori.orapub.com « Training

raPub s ompub e Py Consumpten]

Agenda

Oracle Time Based Analysis (TBA)
Wait Time

CPU Time

Merging Wait and CPU Time
Seeing is believing

Next Steps

@raPub connare GG

’l(][”llh

Holistic Performance Analysis

Application Operating

e System

Oracle

WORKLOAD REPOSITORY report for

Top 5 Timed Events

CPU time] [3641] 66.3| |
db file sequential read |[489,550| 587 1] 10.7|[uservo |
db file scattered read || 12,142 565 47| 10.3|[userio |
direct path read temp |[34,932 470 13| 8.6|userio |
log file parallel write 6,253 235 38| 4.3[system 10|

Main Report

Report Summary
Wait Events Statistics
L Statistics

[] []
nstance Activity Statistics 4
10 Stats '
Buffer Pool Statistics

.

.

.

.

.

.

« Advisory Statistics
« Wait Statistics

+ Undo Statistics
.
.
.
.
.
.
.
.

|

Latch Statistics trustworthy, repeatable,
Segment Statistics

Dictionary Cache Statistics demonstrable
Library Cache Statistics

Memory Statistics

Streams Statistics

Resource Limit Statistics

init.ora Parameters

raPub s ompub e Py Consumpten]

Oracle Time Based Analysis

» Modern Oracle performance analysis is about
meeting user and business requirements, in
large part by reducing time.

« Time to “run” a SQL statement, a batch job, a
module, or business function.

+ Batch jobs: Focus on reducing duration.

» OLTP: Focus on reducing elapsed time.

« Unit of Work Time Based Analysis focuses on
the time it takes to process a single unit of work
and allows the unification of an Oracle Time
Based Analysis with Operations Research.

raPub s ompub e Py Consumpten]

Elapsed time
from an Oracle time perspective.

Elapsed Time = CPU Time + Wait Time

C (W] C W C

Single serial session

raPub s ompub e Py Consumpten]

Oracle wait time over an interval.

Wait Events

e s-second

* cs - centisecond - 100th of a second

e ms - millisecond - 1000th of a second

* us - microsecond - 1000000th of a second

« ordered by wait time desc, waits desc (idle events last)

B 1 T

db file sequential read 489,550 0 00 252.35
db file scattered read 12,142 565“ 47 6.26]|
direct path read temp 34,932 0.00) 470 13 18.01)
log file parallel write 6,253 0.00) 235 38 3.22|
db file parallel write 4,029 0.00) 176 44) 2.08)|
direct path write temp 30,705 0.00 160|| 5] 15.83
log buffer space 416 0.00) 46 111 0.21
log file sync 1,938 0.00) 38| 20| 1.00

NI Wait time = 587 + 565 + 470 + 235 +176 + 180 + other = 1848 sec

base view:
wait: v$system event
cpu : v$sys_time model

raPub s ompub e Py Consumpten]

Oracle process CPU consumption

Time Model Statistics

e Total time in database user-calls (DB Time): 5488.7s

* Statistics including the word "background" measure background D B C PU = 364 1
* Ordered by % or DB time desc, Statistic name

Total CPU =
sgl execute elapsed time 5,385.61 98.12
—> [bBCPU 3,641.47 66.34 3641 + 84 = 3725
parse time elapsed 139.84 2.55
hard parse elapsed time 132.46 2.41
PL/SQL execution elapsed time 12.18 0.22
PL/SQL compilation elapsed time 9.35 0.17
connection management call elapsed time| 9.21 0.17|
hard parse (sharing criteria) elapsed time 5.65) 0.10
sequence load elapsed time 1.19 0.02
failed parse elapsed time 0.76) 0.01
repeated bind elapsed time 0.46 0.01
hard parse (bind mismatch) elapsed time 0.31 0.01
DB time 5,488.72
background elapsed time 534.09 base view:
—> ||background cpu time 84.49 v$sys_time model

raPub ———

Database time

NI'Wait Time “DB time” does NOT include
background process CPU
consumption, though all OS
processes compete for CPU
CPU Time resources. You decide.

NI Wait time = 587 + 565 + 470 + 235 +176 + 180 + other = 1848 sec
CPU time = 3641 sec = DB CPU = Oracle foreground process CPU time
Big Bar Time = DB time = 5489 sec = NI Wait time + CPU time

raPub ———

We can see the wait breakdown.

How can I help you? get oracle wait time by event top 6

direct path read,2530.741517

enq: TX - row lock contention,2432.46223

db file sequential read,1445.357118

log file sync,168.80679

log file parallel write,154.141394

read by other session,85.438134 Oracle Top 5 Wait Events

How can I help you? get chart bigbar oracle events

m direct path

work/1376145486_oracle_event_x_ BB.png
= enq: TX-ro

1 dbfile sequ

= log file syn

m log file par

1 Other

Bistori

raPub s ompub e Py Consumpten]

How Oracle gets wait time

Does this system call timing really work?

Wait time: set the time.

Wait time: wait for an opportunity to
continue

Wait time: time the call.

raPub s ompub e Py Consumpten]

$ cat syscall.c

void
main () {

fd set rfds;

int i;

struct timeval tv, xv;
struct timespec start; What tlme

FD_ZERO (&rfds) ; is it?
FD_SET (0, &rfds) ;
for (i=5;i>0;i--) { /

clock_gettime (CLOCK_MONOTONIC, &start);
gettimeofday (&xv, 0);

tv.tv_sec = 2; 2 sec

tv.tv_usec= 0; _— de|ay
select(l, &rfds, NULL, NULL, &tv);

}

clock gettime (CLOCK_MONOTONIC, &start);
gettimeofday (&xv, 0);

Does this really work?

Does this really work? Let’s look!

$ strace -r

.000067
.000041
.000038
.002513
.000243
.000242
.002479
.000229
.000323
.002547
.000304
.000312
.002518
.000319
.000325
.002559
.000321
.000314

OONMNOONMNOONMNOONMNMNOONOOO

./a.out

clock gettime (CLOCK MONOTONIC, {2511, 257235340}) = 0
gettimeofday ({1382036695, 441289}, NULL) = 0
select (1, [0], NULL, NULL, {2, 0}) = 0 (Timeout)
clock gettime (CLOCK_MONOTONIC, {2513, 259913758})
gettimeofday ({1382036697, 444166}, NULL) = 0
select(l, [], NULL, NULL, {2, 0}) = 0 (Timeout)
clock gettime (CLOCK_MONOTONIC, {2515, 262880212}) = 0
gettimeofday ({1382036699, 447141}, NULL) = 0
select(l, [], NULL, NULL, {2, 0}) = 0 (Timeout)

clock gettime (CLOCK_MONOTONIC, {2517, 265977190}) = 0
gettimeofday ({1382036701, 450297}, NULL) = 0
select(l, [], NULL, NULL, {2, 0}) = 0 (Timeout)
clock_gettime (CLOCK_MONOTONIC, {2519, 269119872}) = 0
gettimeofday ({1382036703, 453457}, NULL) = 0

select (1, [], NULL, NULL, {2, 0}) = 0 (Timeout)

clock gettime (CLOCK MONOTONIC, {2521, 272323512}) = 0
gettimeofday ({1382036705, 456662}, NULL) = 0

exit group (0) =2

[
o

$
—‘ Notice the two second “select” and the two second “what time is it?” calls. P

raPub

s ompub e Py Consumpten]

Time the call.

$ strace -rp 2518
0.000324 clock gettime (CLOCK_MONOTONIC, {504, 52586559}) = 0
0.000040 clock_gettime (CLOCK MONOTONIC, {504, 52625324}) = 0
=2 0.000040 pread (257, "\6\242\0\f\0"..., 8192, 427270144) = 8192
0.000047 clock_gettime (CLOCK_MONOTONIC, {504, 52712996}) = 0
0.000044 clock gettime (CLOCK _MONOTONIC, {504, 52757393}) = 0
0.000329 clock gettime (CLOCK_MONOTONIC, {504, 53086771}) = 0
0.000040 clock_gettime (CLOCK MONOTONIC, {504, 53125505}) = 0
=2 0.000040 pread (257, "\6\76 [y\f\0"..., 8192, 427278336) = 8192
0.000047 clock_gettime (CLOCK_MONOTONIC, {504, 53213583}) = 0
0.000040 clock gettime (CLOCK MONOTONIC, {504, 53253021}) = 0
0.000327 clock gettime (CLOCK_MONOTONIC, {504, 53580561}) = 0
0.000040 clock_gettime (CLOCK MONOTONIC, {504, 53619199}) = 0
=2 0.000040 pread (257, "\6\273\f\0"..., 8192, 427286528) = 8192
0.000047 clock_gettime (CLOCK_MONOTONIC, {504, 53706779}) = 0
0.000040 clock gettime (CLOCK MONOTONIC, {504, 53752611}) = 0

iUnux,121,seqreads

0.000047672 sec =

raPub

((52712996-52625324) /1000000000) -0.000040

Wait for an opportunity to continue.

raPub

$ strace -rp 32873 ‘

Process 32873 attached - interrupt to quit ‘ Linux, 012.1, CBC ‘
0.000027 getrusage (0x1 /* RUSAGE ??? */, {ru utime={217, 423946},
1.991878 clock_gettime (CLOCK MONOTONIC, {81915, 22092045}) = 0
0.000058 getrusage (0x1 /* RUSAGE_??? */, {ru utime={218, 96844},
0.000039 clock_gettime (CLOCK_MONOTONIC, {81915, 22165643}) = 0

. then bamb!

0.000026 getrusage(0xl /* RUSAGE_??? */, {ru_utime={225, 612701},
0.678239 clock_gettime (CLOCK_MONOTONIC, {81935, 710441832}) = 0
0.000056 gettimeofday({1382121114, 896822}, NULL) = 0

=3 0.000036 semop (1933315, {{52, -1, 0}}, 1) =0
0.010648 clock gettime (CLOCK MONOTONIC, {81935, 721164886}) = 0
0.000034 gettimeofday({1382121114, 907540}, NULL) = 0
0.000027 gettimeofday({1382121114, 907569}, NULL) = 0

= 0.000059 semctl (1933315, 46, SETVAL, O0x1l) = 0

=== 0.099170 semctl (1933315, 60, SETVAL, 0x7£4000000001) = 0
0.000064 clock gettime (CLOCK MONOTONIC, {81935, 820517786}) = 0
0.000033 gettimeofday({1382121115, 6892}, NULL) = 0

—> 0.000029 semop (1933315, {{52, -1, 0}}, 1) = 0
0.009552 clock_gettime (CLOCK_MONOTONIC, {81935, 830133485}) = 0
0.000035 gettimeofday({1382121115, 16509}, NULL) = 0

\

There were no “selects”...

Focus: CPU time

Q: What about the CPU
. NI Wait Time time?

Q: Is that important?

’) CPU Time

) Q: What is Oracle doing
with all that CPU?

NI Wait time = 1848 sec
CPU time = 3641 sec = DB CPU = Oracle foreground process CPU time
Big Bar Time = DB time = 5489 sec = NI Wait time + CPU time

rarub

What about the CPU breakdown?

Time (s) Function

NI Wait Time
1500 abc

1400 def
CPU Time

600 ghi

141 jkl

rarub

My dream...
PID: 28497 SID: 404 SERIAL: 6185
Time

Time Component secs %
wait: log file parallel write 25.017 83.41
wait: log buffer space 1.632 5.44
cpu : [?] sum of funcs consuming less than 2% of CPU time 1.500 5.00
wait: log file switch completion 0.559 1.86
cpu : [.] kcbchgl main 0.227 .76
cpu [.] kcrfw_redo_gen ext 0.123 41
cpu [.] kcbget 0.121 40
cpu [.] __intel_ ssse3_rep_memcpy 0.095 32
cpu [.] kecrfw_copy_cv 0.090 30
cpu [.]1 kdkcmpl 0.090 30
cpu [.] kcoapl 0.089 30
cpu [.] kcbgcur 0.074 25
cpu [.] kdiinsl 0.074 25
cpu [.] kauupd 0.068 23
cpu [.]1 ktuchg2 0.062 21
cpu [.] kduovw 0.061 20
cpu [.] updrow 0.057 19
cpu [.] kdimodO 0.056 19

raPub ———

Is CPU detail useful?

» Confirm the performance story. Example: If there is a
parsing issue, | expect some type of SP/LC related
function.

» During my research, it can help me understand what
Oracle is doing “under the hood.”

» Answering the question, “So what is Oracle doing with all
that CPU?!” Especially when lots of CPU relative to wait
time.

» CPU with little wait time. Therefore, no wait time clues.

» Potential Oracle bug detection.

raPub ———

Bad News
Oracle does not provide CPU
consumption details through the
v} views.

raPub ———

Bad News
Oracle does not provide CPU
consumption details through the
v$ views.

Good News
OS tools do help solve the CPU
consumption mystery.

raPub ———

Our OS Options...

strace/truss. No. Only system calls and
their elapsed time. Not CPU consumption.
dtrace. Yes, but:

— must be closely connected with Oracle
—there is a port for Linux and Oracle

— It is more of a “step by step” analysis/
debugger tool

gdb. Perhaps, but it's more of a debugger
than a profiler.

perf. Yes!
raPub (¢)2013 OraPub, Inc. _

What is “Perf™?

e Perf is:
— Linux process profiling tool
— Based on counting specific events:
* instructions, cache-misses, cycles, etc.
— Provides these counters for a function call
— Provides a call tree graph
— Has a set of tools for displaying, recording,
and reporting.

* It's free and was on my Linux distribution.

https://perf.wiki.kernel.org/index.php/Main Page

raPub s ompub e Py Consumpten]

raPub

perf stat. Obtain event counts

e perf record. Record events for later
reporting.

perf report. Break down events by
process, function, etc.

e perf annotate. Annotate assembly or
source code with event counters

perf top. See live event count

The “perf” tools

s ompub e Py Consumpten]

$ which perf
/usr/sbin/perf

$ ps -eaf | grep oracleprod35

oracle 28497 28496 8 09:58 ? 00:31:36 oracleprod35 (DESCRIPTION=(LOCAL=YES
oracle 42265 28425 0 15:51 pts/1 00:00:00 grep oracleprod35

$ perf stat -p 28497 sleep 5

Performance counter stats for process id '28497':

560.686866
32

1

0
1,522,513,670
952,309,947
568,827,423
1,333,413,297

249,397,610
4,478,117

5.000696361

.112 CPUs utilized

.000 M/sec

.000 M/sec

.000 M/sec

.715 GHz [83.

task-clock
context-switches
CPU-migrations
page-faults
cycles

E e S T I S
H&OOSNNMNMNMOOOO
[¢]

(T]
oe

stalled-cycles-frontend 6 frontend cycles idle [83.
stalled-cycles-backend 37.36% backend cycles idle [66.
instructions .88 insns per cycle

.71 stalled cycles per insn [83.
branches 444 .807 M/sec [82.
branch-misses .80% of all branches [83.

seconds time elapsed

raPub

s ompub e Py Consumpten]

$ perf top -p 28497 -d 30
PerfTop: 89 irgs/sec kernel: 5.6% exact: 0.0% [1000Hz cycles], (target pid: 28497)
samples pcnt function DSO

205.00 7.6% kcbchgl main /home/oracle/base/product/12.

148.00 5.5% kcbget /home/oracle/base/product/12.

124.00 4.6% kcrfw_redo_gen_ ext /home/oracle/base/product/12.

114.00 4.2% kdkcmpl /home/oracle/base/product/12.

100.00 3.7% _ intel ssse3_rep memcpy /home/oracle/base/product/12.

99.00 3.7% kcrfw_copy cv /home/oracle/base/product/12.

89.00 3.3% kcoapl /home/oracle/base/product/12.

84.00 3.1% kcbgcur /home/oracle/base/product/12.

77.00 2.9% kdiinsl /home/oracle/base/product/12.

62.00 2.3% kduovw /home/oracle/base/product/12.

56.00 2.1% ktuchg2 /home/oracle/base/product/12.

52.00 1.9% ktugur /home/oracle/base/product/12.

51.00 1.9% kdimodO /home/oracle/base/product/12.

50.00 1.9% updrow /home/oracle/base/product/12.

46.00 1.7% kauupd /home/oracle/base/product/12.

42.00 1.6% gertbFetch /home/oracle/base/product/12.

38.00 1.4% kdudcp /home/oracle/base/product/12.

raPub s ompub e Py Consumpten]

$ perf record -e cycles -p 28497 sleep 30
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.093 MB perf.data (~4057 samples)]
$ perf report
Events: 2K cycles
#
Overhead Command Shared Object Symbol
2
#
7.91% oracle_ 28497 _pr oracle [.1 kcbchgl main
4.87% oracle_28497_pr oracle [.] kcbget
4.07% oracle_28497 _pr oracle [.] kcrfw_redo_gen_ext
3.86% oracle 28497 pr oracle [.] kdkcmpl
3.42% oracle_28497_pr oracle [.] __intel_ ssse3_rep_memcpy
3.37% oracle 28497 pr oracle [.] kcoapl
3.23% oracle 28497 _pr oracle [.] kcrfw_copy cv
3.08% oracle 28497 pr oracle [.] kcbgcur
2.56% oracle 28497 pr oracle [.] kdiinsl
2.22% oracle 28497 _pr oracle [.] ktuchg2
2.03% oracle 28497 pr oracle [.] ktbgwl
2.00% oracle 28497 pr oracle [.] kauupd
1.88% oracle_28497 _pr oracle [.] kduovw
1.78% oracle_ 28497 _pr oracle [.] kdimodO
1.56% oracle_28497_pr oracle [.] kdudcp

raPub s ompub e Py Consumpten]

$ perf record -g -e cycles -p 28497 sleep 3

[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.081 MB perf.data (~3558 samples)]

$ perf report -g

Events: 212 cycles

-28.36%-- kddchg

#
Overhead Command Shared Object Symbol
{} cooooooo o0oocoooo000000o 00000000000000000 0000O00000000000AGAAAAAAAG
#
6.47% oracle_28497_pr oracle [.] kcbchgl main
|
--- kcbchgl main
kcbchgl
ktuchg2
ktbchg2 The far left column
' does sum to 100%.
|--50.94%-- kdimodO
| kauupd
| updrow
| gerupFetch
| updaul
| updThreePhaseExe
| updexe
|
|
I_
|

kduovw
L ——————— 111

But how to integrate
wait and CPU time

Oracle provides wait time.

Oracle provides total CPU consumption.

Perf provides CPU cycle counters.

How to integrate this into a time based
analysis...

raPub ———

Suppose over a 30 second period...

 v§session_wait sum(time_waited)/100 is 10
seconds

vPsess time _model, db_cpu/1000000 is 20
seconds

60% of CPU counters are function ABC
30% of CPU counters are function DEF
10% of CPU counters are all other functions

raPub s ompub e Py Consumpten]

Can | then state...

» Total Wait time is 10 seconds

» Total CPU time is 20 seconds

» 12 sec of CPU for function ABC

» 6 sec of CPU counters for function DEF

» 2 sec of CPU counters for all other
functions

raPub s ompub e Py Consumpten]

Can | jump
from counts to seconds?

The default sample rate is 1000 cycles/sec.

If a function is on CPU less than 1/1000 second,
the count could be missed.

This is also true for ASH’s. And ASH’s samples
at only 1 cycle/sec.

The more important a function is to us, the more
likely it will be sampled.

With this in mind, I'm comfortable going from
counter to time.

raPub ———

Again... My Dream...

2540 direct path read

2432 enq: tx — row lock

NI Wait Time
1445 db file sequential read
700 other

CPU Time
1500 abc
1400 def
600 ghi

Total time over an 141 jKl

N minute interval

raPub ———

Don’t stop dreaming...
This is closer to what | really want!

Time (s) Type Time Component

2540 wait direct path read

2432 wait enq: tx — row lock

1500 cpu abc

1445 wait db file sequential read

1400 cpu def

700 wait other

600 cpu ghi

141 cpu jKl
Total time over an
N minute interval

raPub

Let’s create a script.

Help user Identify the PID to profile
Initial setup
Loop
get oracle CPU consumption (snap 0)
get oracle wait times (snap 0)
start capture oracle kernel cpu details
sleep x
get oracle CPU consumption (snap 1)
get oracle wait times (snap 1)
stop capture oracle kernel cpu details
do some cool math and other neat stuff

display results

End Loop

raPub

Introducing the “fulltime.sh” tool.
Process level CPU and Oracle wait time
reporting and analysis.

Periodically cycles like the tool top. The refresh rate
and other details can be changed within the tool. You are
intelligently prompted for process ID.

$./ffulltime.sh

Full control at the command line.

$ /fulltime.sh <pid> <duration> <cycles>

$./fulltime.sh 5486 30 1

raPub ———

Example: CBC — fulltime.sh

$ fulltime.sh 32873 120 1

PID: 32873 SID: 9 SERIAL: 13 USERNAME: OE2 at 18-Oct-2013 12:13:49
CURRENT SQL: SELECT COUNT(*) FROM (SELECT SUM(OBJECT_ID) FROM ORDERS UNION SELECT

total time: 44.438 secs, CPU: 41.611 secs (93.64%), wait: 2.827 secs (6.36%)

Time
Time Component secs %
cpu : [.] kcbgtcr 29.714 66.87
cpu : [.] kdst£f000010100001km 3.716 8.36
cpu : [.] lnxsum 3.541 7.97
cpu : [?] sum of funcs consuming less than 2% of CPU time 2.393 5.38
cpu : [.] kafd4reasrpOkm 2.180 4.91
wait: PL/SQL lock timer 2.100 4.73
wait: latch: cache buffers chains 0.727 1.64

raPub ———

Let's see it live (recorded)...

[oracle@sixcore perf]$ fulltime.shl]]

raPub

What does kcbchg1 _main mean?

$ perf report

Events: 2K cycles

#

Overhead Command

#oo

#
7.91% oracle 28497 pr
4.87% oracle 28497 pr
4.07% oracle 28497 pr
3.86% oracle 28497 pr
3.42% oracle 28497 pr
3.37% oracle 28497 pr
3.23% oracle 28497 pr
3.08% oracle 28497 pr
2.56% oracle_28497 pr
2.22% oracle_28497 pr
2.03% oracle_28497 pr
2.00% oracle_28497 pr
1.88% oracle 28497 pr
1.78% oracle 28497 pr
1.56% oracle 28497 pr
1.55% oracle 28497 pr
1.49% oracle 28497 pr
1.48% oracle 28497 pr
1.26% oracle 28497 pr

Shared Object

oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle

Symbol
kcbchgl_main
kcbget
kcrfw_redo_gen_ext
kdkcmpl

__intel_ssse3_rep_memcpy
kcoapl
kcrfw_copy_cv
kcbgcur
kdiinsl
ktuchg2
ktbgwl

kauupd
kduovw
kdimodO
kdudcp

ktbgfi

ktugur
updrow
kdxbrsl

raPub

Decoding Oracle kernel function names.

Do a Google search... no promises... no guarantees...

k (kernel) k g

2 (two phase commit) 1 (LC/SP mgt)
a (iot changes) r (resource mgr)
c (cache) r

b (buffer) b (bar)
d (data) vg (DDL redo)
f (file) t (space mgt, trx control)
g b (blk level)

bt (btree) e (ext level)

h (heap mgr) f (flashback)

1 (library cache) fb (file bitmap)

u (os proc) P (parallel trx)

X (ip comm) r (read consis)
j (RAC) s (checking/verifying)
k (realted to SP) u (undo)
1 (DP loader) w (AQ)
m (mts) z (security, encrypion)
n (streams, rep) :
o (obj) o (oper out->in of Oracle)
P p zplsql;

: g (query
P (parsing) r (row)

u

c (cusor mgt) 251(é2§t?°t)

up (update)

raPub s ompub e Py Consumpten]

Some inferences from previous
perf report output.

kcbchg1main. kernel, cache, buffer,
change

kcbget. kernel, cache, buffer, get

kcrfw_redo_gen_ext. kernel, cache, ..redo
generation

kdkcmp1. kernel, data, change

raPub s ompub e Py Consumpten]

Example: FBW - Oracle

SQL> @rtpctx

Remember: This report must be run twice so both the initial and

final values are available. If no output, press ENTER about 20 times

Database: prod35 18-0CT-13 07:1

Report: rtpctx.sql OSM by OraPub, Inc. Page
Response Time Activity (131 sec interval)

Avg Time Time i
Time Component $ TT % WT Waited (ms) (sec) Coun
free buffer waits 40.71 41.59 21.540 809.460
enq: KI - contention 30.65 31.31 33852.222 609.340
DLM cross inst call completion 6.03 6.16 7496.875 119.950
db file async I/0 submit 6.02 6.15 1286.989 119.690
CPU consumption: Oracle SP + BG procs 2.12 0.00 0.000 42.235
write complete waits 1.80 1.84 1194.333 35.830
log file redo write 1.58 1.61 89.714 31.400
log buffer full - LGWR bottleneck 1.00 1.02 75.530 19.940
log file switch (private strand flush 0.59 0.60 1675.714 11.730
raPub =

(c)2013 OraPub, Inc.

b

Example: FBW — PlO — Fulltime.sh

PID: 13967 SID: 268 SERIAL: 17 USERNAME: MG2 at 18-Oct-2013 07:14:11
CURRENT SQL: declare i number; begin dbms_application_info.set_module
total time: 16.382 secs, CPU: .888 secs (5.42%), wait: 15.494 secs (94.58%)
Time
Time Component secs %
wait: free buffer waits 15.482 94.51
cpu : [?] sum of funcs consuming less than 2% of CPU time 0.584 3.56
cpu : [.] _intel fast memcmp 0.080 49
cpu [.] kcbgtcr 0.054 33
cpu [.] gerixGetKey 0.030 18
cpu [.] __intel new_memset 0.027 16
cpu [.] expepr 0.026 16
cpu [.] ktrgem 0.025 15
cpu [.] gerixStart 0.023 14
cpu [.] gerfxFetch 0.021 13
cpu : [.] kdxlrs2 0.019 11
wait: db file sequential read 0.010 .06
wait: db file scattered read 0.002 .01
wait: read by other session 0.000 .00
wait: latch: cache buffers chains 0.000 .00

raPub x

(c)2013 OraPub, Inc.

b

Example: inserts — fulltime.sh

PID: 13698 SID: 258 SERIAL: 9 USERNAME: MG2 at 18-0Oct-2013 07:02:55
CURRENT SQL: create table custome

total time: 8.036 secs, CPU: 3.078 secs (38.3%), wait: 4.958 secs (61.7%)
Time
Time Component secs %

wait: direct path read .048 50.37
cpu : [.] gerandvRop

cpu : [?] sum of funcs consuming less than 2% of CPU time
cpu : [.] kgghash2

wait: direct path write

cpu : [.] kdblailb

wait: events in waitclass Other

wait: control file parallel write

cpu : [.] gesaFastAggNonDistSSOnSfn

cpu : [.] kdblai

cpu : [.] gerltFRop

cpu : [.] kafd4reasrpOkm

wait: db file single write

wait: Disk file operations I/O

OO0 0000000000 O N
=N
w o
o o
PP RPRRFEPEFELNOGOUOGODOYO
-~
©

Samples remaining: 998
Gathering next 10 second sample...
To see the Call Graph, press ENTER or to exit press CNTRL-C.

raPub ———

Events: 1K cycles

#

Overhead Command Shared Object Symbol
#

23.42% oracle 13698 pr oracle [.]1 gerandvRop
|

--- gerandvRop

--99.77%-- kdst£000010100000km
kdsttgr
gertbFetch m L]
gerandvFetch Xa p e L]
rwsfed

gerltFetch

ctedrv .
INSerts —
opiosq0

|
|
|
|
|
|
|
|
|
|
| kpoal8
|
|
|
|
|
|
|
|
|
|
|

Call Graph

opiino

opiodr

opidrv

sou2o

opimai_real

ssthrdmain

main

__libc_start main
--0.23%-- [...]

22.21% oracle_13698_pr oracle [.]1 kgghash2
|
--- kgghash2
|
|--98.34%-- gerandvRop
| kdst£000010100000km
| kdsttgr
| gertbFetch
| gerandvFetch
|
|

rwsfed
gerltFetch

Example: LIO — Single — Fulltime.sh

PID: 28758 SID: 168 SERIAL: 49 USERNAME: MG2 at 18-Oct-2013 10:28:49
CURRENT SQL: SELECT COUNT (*) FROM DBA_EXTENTS, DBA_EXTENTS, DBA_EXTENTS
total time: 1.996 secs, CPU: 1.996 secs (100%), wait: 0 secs (0%)

_— o - ~— Time
Time Component d/ SOI’t, merge, N o ffi_‘f ______ is

)

cpu : [.] — buffer gets S 0.642 32.16
cpu : [.] sorgetgbf T~ - 0.628 31.46
cpu : [.] gersoFetchSimple - 0.480 24.05
cpu : [.] rworupo 0.140 7.02
cpu : [.] geaeCnlSerial 0.101 5.04
cpu : [?] sum of funcs consuming less than 2% of CPU time 0.005 .26

To create a single LIO focused session:

select count(*) from dba_extents, dba_extents, dba_extents;

raPub s ompub e Py Consumpten]

Events: 597 cycles
#
Overhead Command Shared Object Symbol
O
#

31.32% oracle 28758 pr oracle [.] smbget

|
--- smbget

|

|--93.12%-- sorgetgbf

| gersoFetchSimple
| gersoFetch
| gerjotFetch
| gergsFetch
| opifch2
|
|
|
|
|
|
|

Example: LIO,
Single Session,
Call Graph

opiefn0
opipls
opiodr
rpidrus
skgmstack
rpiswu2
rpidrv

raPub s ompub e Py Consumpten]

Example: PIOR

PID: 2518 SID: 35 SERIAL: 47 USERNAME: MG2
CURRENT SQL: SELECT SUM(OBJECT_ID) FROM ALL_OBJECTS

at 17-Oct-2013 11:42:52

total time: 37.129 secs, CPU: 28.879 secs (77.78%), wait: 8.25 secs (22.22%)

Time

secs %
640 52.90
294 19.64
577 12.33
108 5.68
019 2.75
856 2.30
791 2.13
638 1.72
101 .27
000 .00

Time Component

cpu : [?] sum of funcs consuming less than 2% of CPU time 1
wait: direct path read

cpu : [.] kafd4reasrplkm

cpu : [k] copy user_ gener tring

cpu : [.] kdst£110010100000

wait: events in waitclass Other

cpu : [.] sxorchk

cpu : [.] kcbgtcr

wait: db file sequential read :

wait: db file scgl:tered read kernell IOt Changes

Samples remaining: 0
Gathering next 30 second sample...

OO O0OO0OCORNMNMAEJV

raPub

(92013 OraPu, e

Example: Pin S - Oracle

SQL> @rtpctx

Remember: This report must be run twice so both the initial and
final values are available. If no output, press ENTER about 20 times.

Database: prod35
Report: rtpctx.sql

OSM by OraPub, Inc.

Response Time Activity (130 sec interval)

Time Component %
CPU consumption: Oracle SP + BG procs 92.
cursor: pin S 6
control file parallel write 0
db file async I/O submit 0.
log file redo write 0

Avg Time
WT Waited (ms)

00 0.000
91 8.357
71 24.186
77 10.217
76 9.388

18-0CT-13 06:4

Page

raPub

$ fulltime.sh 124545 15 1

PID: 12545 SID: 168 SERIAL: 9 USERNAME: SYSTEM at 18-Oct-2013 06:40:13
CURRENT SQL: SELECT COUNT(*) FROM DBA_OBJECTS WHERE 1=0

total time: 14.468 secs, CPU: 13.239 secs (91.51%), wait: 1.229 secs (8.49%)
Time

Time Component secs %
cpu [?] sum of funcs consuming less than 2% of CPU time 10.938 75.60
cpu [.] __intel new_memset . 1.252 8.66
wait: cursor: pin S ~._ — 1.229 8.49
cpu : [.] opiexe > . - 0.436 3.01
cpu : [.] audsel (Intel chip, new, > 0.367 2.53
cpu : [.] kxsxsi N set memory ~ 0.270 1.87

Samples remaining: 0

Gathering next 15 second sample...

Example:
Pin S,
fulltime.sh

raPub

Events: 5K cycles
#
Overhead

9.61% oracle_12545 pr oracle

--- _ _intel new_memset

|
|--91.02%-- opiexe
| opiodr
| rpidrus
| skgmstack
| rpiswu2
| rpidrv
| psddr0
| psdexn
| pevm_EXECC
| pfrinstr_ EXECC
sou2o
opimai_real
ssthrdmain
main
_ 1libc start main

--3.91%-- audStatement

[.] __intel new_memset ?
| |

Example:
Pin S, Call
Graph

| did a Google search for
__intel _fast._ memset

Optimize memcpy

High performance versions of commonly used functions may exist, but perhaps not readily usable as a "drop
in" replacement. For instance, Intel® C++ Compiler provides optimized versions of memcpy, memset,
memcmp, and memmove inside the run-time library called libirc.a, although these versions have different
names: _intel_fast_memcpy, _intel_fast_memset, _intel_fast_memcmp. The Intel® C++
Compiler automatically generates calls to these functions for optimized builds, but for non-optimized (-00)
builds calls the versions in 1ibe. so. That's great when using the Intel® C++ Compiler, but adopting a
different compiler can be a large task.

http://software.intel.com/en-us/articles/optimizing-without-breaking-a-sweat

raPub s ompub e Py Consumpten]

Example: CBC - Oracle

SQL> @rtpctx
Remember: This report must be run twice so both the initial and
final values are available. If no output, press ENTER about 20 times.

Database: prod35 18-0CT-13
Report: rtpctx.sql OSM by OraPub, Inc. Page
Response Time Activity (50 sec interval)

Avg Time Time
Time Component $ TT % WT Waited (ms) (sec) Cour
CPU consumption: Oracle SP + BG procs 99.04 0.00 0.000 299.015
latch: cache buffers chains 0.39 40.69 7.564 1.180
db file async I/0 submit 0.26 26.90 11.304 0.780
control file parallel write 0.11 11.72 21.250 0.340
log file redo write 0.07 6.90 11.765 0.200
oracle thread bootstrap 0.04 3.79 55.000 0.110
os thread creation 0.01 1.38 20.000 0.040
commit: log file sync 0.01 0.69 10.000 0.020
target log write size 0.01 0.69 5.000 0.020

raPub s ompub e Py Consumpten]

Example: CBC — fulltime.sh

$ fulltime.sh 32873 45

PID: 32873 SID: 9 SERIAL: 13 USERNAME: OE2 at 18-Oct-2013 12:13:49
CURRENT SQL: SELECT COUNT(*) FROM (SELECT SUM(OBJECT_ID) FROM ORDERS UNION SELECT

total time: 44.438 secs, CPU: 41.611 secs (93.64%), wait: 2.827 secs (6.36%)

Time
Time Component secs %
cpu : [.] kcbgter _ 29.714 66.87
cpu : [.] kdsthOOﬁI&TQQOOlkm 3.716 8.36
cpu : [.] lnxsum 3.541 7.97
cpu : [?] sum of funcs CO!\'I\S*\ ~-less than 2% of CPU time 2.393 5.38
cpu : [.] kaf4reasrpOkm 2.180 4.91
wait: PL/SQL lock timer 2.100 4.73
wait: latch: cache buffers chains § 0.727 1.64
Ve N

kernel, cache, buffer, get, CR \

J

raPub ———

Back to reality... Useful when:

» Confirm the performance story. Example: If there is a
parsing issue, | expect some type of SP/LC related
function.

» During my research, it can help me understand what
Oracle is doing “under the hood.”

» Answering the question, “So what is Oracle doing with all
that CPU?!” Especially when lots of CPU relative to wait
time.

» CPU with little wait time. Therefore, no wait time clues.

» Potential Oracle bug detection.

raPub ———

Want to dig deeper--wider?

+ Presentations: OraPub search, “time”

+ Craig’sBlog—-A Wider View
* Training from OraPub

— Oracle Performance Firefighting (1) . o .

— Adv Oracle Performance Analysis (I1)

— Seminar: Go Faster! Make Oracle Work For YOLJ
* Tools at www.orapub.com

— fulltime.sh. OP search, “fulltime”

— OSM Toolkit. OP search, “osm”

— Firefighting Diagnostic Template. OP search “ff diag”
« Stori. Find, understand and solve Oracle performance problems
* Books

— Oracle Performance Firefighting.

— Forecasting Oracle Performance.

@raPub

Thank you for attending.

Questions?
Contact Craig at
craig@orapub.com - www.orapub.com

Get StoriFree at EStori

http://storifree.com
Find, Understand & Solve

Oracle Performance Problems

‘ raPub (0)20130‘ :

East Coast
~ Oracle Users
(&(® Conference

The most recent

3 version of this

% presentation is on-line
at www.orapub.com.

' Do an OraPub search
\ for "CPU".

Understanding
Oracle CPU
Consumption:

The Missing Link

raPub

Craig A. Shallahamer
OraPub, Inc.
craig@orapub.com

Linked [

